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NONSTATIONARY TEMPERATURE FIELD IN A POROUS
BODY UPON GAS FILTRATION

A_. N. Glushakov and V. I. Voronin UDC 536.21:532.546

A solution is given for the problem of a nonstationary temperature field in spatial
porous bodies upon filtration of a thermodynamically ideal gas.

If, in the region of gas filtration, heat sources (sinks) are absent and the thermophysical param-
eters of the heat-conducting porous material are constant in the range of temperature variation examined
(equal to its mean values) then heat transfer in the case of ideal contact is described by the following equa-~
tion:

@AT — ydiv (ovT) = a_th_ ,

where y = cp/pic; has a constant value.

During gas filtration in a nondeforming porous medium the resistance law in the general case can
be described after the manner of Khristianovich [1)] in the following form:

—E—gradP :—@(v)—v— .
w v

In each actual case the form of the function &(v) is determined by the filtration law. One of the forms

of the function &(v) most justifiable from the theoretical and experimental points of view is as follow [2]:
& (v) = Av -+ Bo?,

where A and B are empirical coefficients depending on the porous structure of the material and the vis-
cosity of the gas.

For large values of v, which are characteristic for a porous cooling system with strongly heated
and coarse bodies, the first term of Eq. (3) is negligibly small compared to the second term. In this case
the principal role is played by inertial forces (the resistance is proportional to v%), and forces of vis-
cosity play a secondary role, Consequently one can assume that the viscosity of the gas is constant (u
= const) and equal to its mean value in the temperature range examined,

l}_pproximating the curve &(v) by the straight line $(W) =a +bvinsucha way that the divergence be-
tween & (v) and &(v) in the region of values of v considered is insignificant, we obtain

P) =tg { = o = const,

where £ is the angle of inclination of the straight line 5(v) to the abscissa v.
We assume that the gas is compressible and thermodynamically ideal, i.e.,

p=P/RT.
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On the strength of the assumptions made, Eg. (2) can be written in the form
m
V =pv =———grad P2
pv T g

Here m = k/2Ruw is a constant,

After substituting @) in Eq. (1) we obtain

a?AT - cAP? = —aT— ,
ot

where o = ke,/2Rupiciw s a constant.

If the boundary of the porous medium can be split into two parts, corresponding to the entry and exit
of gas, at each of which a constant pressure, Pyand Py, respectively, is maintained, then one may as-
sume that 8P%/8t ~ 0 and Eq. (5) is written in the following form:

d9

a*Ap = —— ,
"=

where ¢ = T + nP? (n = 0/d?).
Thus, a solution of the stated problem should be sought in the form
Qx4 2 ) =T g, 2 ) +nP*(x, y, 2).

It is seen from Eq. (7) that the function T(x, y, z, t) is determined from the solution of two prob~-
lems: the appropriate boundary problem of the heat conduction equation, and the problem of a stationary
pressure distribution in the porous medium, the solution of which can be constructed on the basis of the
results of [3].

As a result of this it is assumed that the temperature at each of the boundary sections remains con-
stant, i.e., the surfaces corresponding to the entry and exit of gas are simultaneously isobaric and iso-
thermal surfaces. At the moment t = 0 the temperature of the exit surface abruptly assumes a new con-
stant value, as 2 result of which a redistribution of T and P takes place within the body.

NOTATION

is the temperature;

is the pressure;

is the density;

is the time;

is the velocity of filtration;

is the coefficient of dynamic viscosity;
is the coefficient of thermal diffusivity;
is the coefficient of permeability;

is the gas constant;

is the heat capacity of a gas at constant pressure;
are spatial coordinates.
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Subscript

1 denotes the porous medium.
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